Palindrome algorithm notation by Daniel Marschall

This script shows my notation of the palindrome algorithm, which can transform a number into a palindrome, except for the Lychrel numbers.
a is the number where we want to create a palindrome from:

$$
a \in \mathbb{Z}
$$

Now we use a recursive function to describe the palindrome-algorithm:

$$
\begin{gathered}
f_{a}(0):=a \\
f_{a}(x)=f_{a}(x-1)+\operatorname{rev}\left[f_{a}(x-1)\right] \\
x \in \mathbb{N} \backslash\{0\}
\end{gathered}
$$

$\operatorname{rev}[]$ is a function that inverses a number. I found no mathematical notation for this function.
For the smallest x (that means the first palindrome that was found) that has following conditions

$$
\begin{gathered}
f_{a}(x)=\operatorname{rev}\left[f_{a}(x)\right] \\
x \in \mathbb{N} \backslash\{0\}
\end{gathered}
$$

we can define:

$$
\begin{gathered}
I(a):=x \\
P(a):=f_{a}(x)
\end{gathered}
$$

$P(a)$ is the palindrome that results from the intial number a after $I(a)$ iterations with the palindromealgorithm.

Examples:

$$
\begin{gathered}
I(5273)=1 \\
P(5273)=8998
\end{gathered}
$$

$$
\begin{gathered}
I(4753)=5 \\
P(4753)=475574
\end{gathered}
$$

There are numbers, which seem to have no solution with the palindrome algorithm. They are called Lychrel numbers. Let's give them a mathematical set notation.

$$
\begin{gathered}
\mathbb{L}=\{196,295,394,493,592,689,691,788, \ldots\} \\
\mathbb{L} \in \mathbb{N} \backslash\{0\}
\end{gathered}
$$

And maybe we can give all palindrome numbers also a set notification:

$$
\begin{gathered}
\mathbb{P}=\{11,22, \ldots, 121,131, \ldots\} \\
\mathbb{P} \in \mathbb{N}
\end{gathered}
$$

We can also define:

$$
\begin{gathered}
I(x) \in \mathbb{N} \backslash\{0\} \\
P(x) \in \mathbb{P}
\end{gathered}
$$

A problem of the palindrome algorithm, the palindrome set and the Lychrel set is, that the palindromecharacter is dependent on the base b (decimal has $b=10$) of the respective number.

So, I suggest that the Lychrel set notification should be extended with the respective base b :

$$
\begin{gathered}
\mathbb{L}_{10}=\{196,295,394,493,592,689,691,788, \ldots\} \\
\mathbb{L}_{b} \in \mathbb{N} \backslash\{0\}
\end{gathered}
$$

Also the palindrome set notification should be extended with the base b :

$$
\begin{gathered}
\mathbb{P}_{10}=\{11,22, \ldots, 121,131, \ldots\} \\
\mathbb{P}_{b} \in \mathbb{N}
\end{gathered}
$$

Because the inverse function $r e v[]$ is also depended on the base b, we can notify it as $r e v_{b}[]$.
The recursive algorithm could be written as:

$$
\begin{gathered}
f_{a}^{b}(0):=a \\
f_{a}^{b}(x)=f_{a}^{b}(x-1)+\operatorname{rev}_{b}\left[f_{a}^{b}(x-1)\right]
\end{gathered}
$$

For the smallest x that makes the condition

$$
f_{a}^{b}(x)=\operatorname{rev}_{b}\left[f_{a}^{b}(x)\right]
$$

true, we can define:

$$
\begin{gathered}
I_{b}(a):=x \\
P_{b}(a):=f_{a}^{b}(x)
\end{gathered}
$$

If we believe that there is no solution for the Lychrel numbers, we could define:

$$
a \notin \mathbb{L}
$$

But there is no mathematical argument that certifies that there is no solution for the Lychrel numbers.
Here is one example for a solution with $b=16$:

$$
\begin{gathered}
I_{6}(A B)=3 \\
P_{6}(A B)=6 C 6
\end{gathered}
$$

Please send me a note at info@daniel-marschall.de if you have improvement suggestions.
Daniel Marschall
April, 10th 2008

